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emitter sheath in a plasma diode are examined in detail. It is
shown that these general criteria reduce to those criteria presently
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electron temperature are treated as unknown parameters. Numerical-
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Introduction

The criteria presently used for determining the sign of the
emitter sheath in both close- and broad-spaced cesium plasma
diodes are
IS/IpE > 491 = electron rich (negative) emitter sheath,
IS/IpE < 491 = ion rich (positive) emitter sheath,
where I, is the electron emission current (as given by the Richardson
equation) and IpE is the ion current from the emitter. It will
be shown in the next section that these criteria follow directly
from a more general set of criteria by assuming that no collisions
occur in the interelectrode space. Thus, the applicability of
these criteria to a close-spaced collisionless diode cannot be
questioned.

In a broad-spaced plasma diode, however, there are interactions in
the interelectrode space and these interactions give rise to
volume ionization and/or recombination. Since the presence of -
volume ionization in the interelectrode space of a plasma diode
modifies the potential distribution, it must also enter into the
determination of the emitter sheath sign. The criteria stated

above, however, do not take into account such effects.

A phenomenological macroscopic model has been used to determine the
correct criteria when interactions exist in the interelectrode
space., Specifically, this model applies to a broad-spaced plasma
diode where the spacing is many times the mean free path—i.e., to
the case where a plasma, characterized by its own variables, is
formed in the interelectrode space. No specific mechanism for
volume ionization and/or recombination is assumed; both the net
volume ionization and the plasma electron temperature are treated
as unknown parameters. Plasma resistivity has been neglected. 1In
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this paper the equations that describe this model will be derived

and the assumptions that were made will be discussed. The procedures
employed for the solution of this model will be covered and results
will be presented for several cases of interest in thermionic

energy conversion.

Theoretical Model

- Let Is denote the electron emission current from the emitter
surface., This current can be calculated from the Richardson
equation if the concept of a work function is introduced. Since
no quantitative current-voltage characteristics will be considered
in this work, it is never necessary to introduce the concept of a
work function. Instead, it is more desirable to work directly

in terms of the electron emission current. Let Ieo be the
electron emission current from the emitter surface when the
emitter sheath potential vanishes. The motive diagram for this
case is shown in Figure 1.

Using these definitions, the general criteria for determining
the polarity of the emitter sheath can be written as
Ig > I;, = electron rich (negative) emitter sheath,
I, < I,, = ion rich (positive) emitter sheath.
These criteria readily follow from fundamental physical principles
and are valid for all operating regimes in both close- and broad-

spaced plasma diodes.

For a close-spaced diode (no interactions in the interelectrode
space), these general criteria readily reduce to the criteria stated
in the preceding sectlon. To see this, it is only necessary to
introduce the concept of charge neutrality in a plasma with equal
electron and ion temperatures: I =‘/mp/me IpE = 491 IpE .

5
Since there are no interactions in the interelectrode space (and
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thus no reverse electron and ion currents), it follows that *
| Is/I g > 491 = electron rich (negative) emitter sheath,
IS/I g < 491 = ion rich (positive) emitter sheath.
These criteria hold for the close-spaced collisionless plasma diode.

Whenever interactions are present, Iso cannot be written down so
easily. Interactions give rise to electron and ion currents returning
from the plasma to the emitter surface; thus I__ must be a function

of such currents. The calculation of these reverse currents requires
a specific model.

A phenomenological macroscopic model will be used to determine the
values of Iso for a broad-spaced plasma diode where the spacing is
many times the mean free path-—-i.e.,for the case where a plasma,
characterized by its own variables, is formed in the interelectrode
space. In order that this model remain as general as possible,

the electron temperature VTe and the net volume ionization and/or

recombination ADE have been chosen to be unknown parameters.

Thus no specific ionization rates have been assumed. The basic

assumptions used in this model are: ©

l. The temperature of the collector is low so that electron and
ion generation at the collector are negligible. '

2. The Saha-Langmuir equation is a valid representation of ion
generation at the emitter surface. This equation, however, has
been rewritten so as to use the electron emission current Iso
explicitly; thus the concept of an emitter work function is
never explicitly introduced.

3. The plasma in the interelectrode space is uniform with the ion
density equal to the electron density throughout.

4. Maxwellian distributions of electrons and ions exist in the plasma;
the corresponding electron and gas temperatures, however, need
not be equal. |

5. Plasma resistance is neglected.

*It is important to emphasize that this result is independent of the
question of the validity of the Saha-Langmuir equation. The Saha-
Langmuir equation enters only if one attempts to calculate IpE in
terms of I_ (or the emitter work function).
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from the plasma I

6. Extraneous losses, such as thermal radiation from the plasma to
the surroundings, loss of electrons, ions, and atoms from the
interelectrode space, are neglected. ‘

7. Only two species of cesium are considered to exist in the
plasma—atoms and ions. No provisions are presently made for
the possible existence of excited atoms and/or molecules.

Using these éssumptions, a set of six simultaneous equations have-
been formulated to describe the condition when the emitter sheath
vanishes. A brief derivation of each equation follows:

For the current balance at the emitter surface, the net current I is
the result of four groups of charge carriers: (1) saturation current
from the emitter I

50° (2) ion current from the emitter IpE;

. (3) electrons from the plasma (reverse electron current) Iep;

and (4) ions from the plasma (reverse ion current) Ip. Thus
I=T,-Tg+I,-I.. ¢Y

For the current balance at the collector surface, the net current I
is the result of only two groups of charge carriers: (1) electrons
ep %P (-VSC/VTe) ; and (2) ions from the plasma
I, where VTe denotes the electron plasma temperature. The
collector sheath is always assumed to be positive in this model.
Thus ' '

I =1__ exp (-VSC/VTe) -I_. (2)

ep P

The equation for the ion balance across the plasma is

IpE f Apg = ZIp', | ' (3)

where ADE is the net volume ionization and/or recombination in
amps/cm?, ’
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The equation for the ion production at the emitter is

_ 2
IpE =1 /[ 1+ 21, exP(Vi/VTE)/ATE 1, (4)
where I, = arrival rate of atoms and ions from the plasma,
'Vi = ionization potential of cesium,
Vrg = emitter temperature (ev),
A = thermionic emission constant (120 amps/cmz).

This is the Saha-Langmuir equation, rederived in a manner such that
the concept of an emitter work function is never explicitly
introduced.

The equation for the charge density balance in the plasma is

Iep m,/Voo = Ip mp/VG ' (5)

where VG denotes the gas temperature (ev).

The equation for the energy balance for the plasma is

21 + 2 (Vg + Vg = 2Vg)

so Vg = Vo) TC

| (6)
- Apg (Vg +2Vp) - (T + I )Vgo =0 '

where Vpe 1s the collector temperature (ev). Although the approach
used to obtain this equation is similar to that employed in

Reference 1, the referernce points and grouping of terms used are
fundamentally different.* This equation expresses the fact that the
net energy flowing across an imaginary surface immediately outside the

*These differences are significant as it is not necessary to introduce
detailed interaction mechanisms to evaluate any of the terms
occurringin this energy balance equation.
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emitter must equal the net energy flowing across a similar
imaginary surface immediately outside the collector when the

same potential reference points are used for both imaginary
surfaces. Since only ions and atoms are considered to be crossing
these imaginary surfaces, the possible presence of excited atoms
and/or molecules has been neglected. A derivation of this equation
is presented in the Appendix. | ‘ o

In order to study the solution of this set of six simultaneous
non-linear equations, it is convenient to rewrite these equations
in a different form. Substituting Equations (1), (2), (3), and
(5) into Equation (6), it follows that |

'ZISO(VTE*VTQ_) -PJ‘Ia.(VTE * VT'C—JVQ) - ADE (VL """?V-re_ ) -

= [I5°+ADE(/ -é\/mfv,a/mevg- :Tﬁﬁ'/;ﬂf Vie /. Y, ] Ve

where

v ey g BB e -4 e P ) - 5 e T Y ]
Te
(Zoe # Aoc W Vo /%

and where Equation (4) continues to be used to relate I . to Vi,.

It is convenient to look for solutions of this equation in the

I, - Apg plane with VTe treated as a parameter. A study of

Equation (7) in the I, - Apg plane shows that this equation possesses
solutions only in very limited ranges. These restricted ranges

can be found as follows:
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Physically, it is necessary that I, 2 0. From Equation (3), it

follows that Apy = - I . Also, 0 < Vg € = . Thus, from

Equation (7), it follows that

Lo+ e (1= 8 mp e P Ve ) - 2o Vo Ime Ve 20 (@

and

AL Ao (1= 4V,

Voo 72 e ) B S Ve P ] = (L # A 2o e P

This last inequality can be rewritten as

Lyt Ao 1=Vl Ve ) - Loe Vom U IV, 20 @

Now the equality in Equation (8) gives rise to a bound on Iso‘as
a function of ADE' -Let this bound, which results when VSC - o .
be denoted by (Ig,) ;. . The equality in Equation (9) also gives
rise to a bound on Isb as a function of Apg. Let this bound,
which results when Vgo = 0 , be denoted by (I ) .. . It is
straightforward to show from Equations (8) and (9) that for

I = (I A + = . Sinc 2 f "
e A A LIRS L JUR e NG S

DE pE so’min

(ISO)max . At the point App + IpE = 0, it can be shown from
Equation (3) and Equation (8) that _
g1, '
(Tso) = A = "*‘/’*/77?‘ exp (Ve /e ) (10)
S0 /'min " .
”pe*l}s“’ . ,q;/”' ex/a(V;/Vre.)
E. -

Here the positive root was selected because Iso.2 0. This équation

serves as a lower bound on both Lo and Apg and is independent of VTe'
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An upper bound for Ay, follows from the ‘left hand side of Equation

(7). This bound, however, is not very useful as it is a
function of Iso and VTe

Instead of considering further possible bounds on this set of
equations, it is convenient to find the envelope of all possible
solutions in the I, - App plane. This envelope is given by

)min from Equation (8) and (I from Eqﬁation (9). Since

(ISO so)max

each of these equations is a function of two variables, Apn and Vo

it is necessary to have another equation in order to make both
(Iso)min and (Iso)max functions of one parameter only. Such an
equation follows from Equation (7) and the definitions of

(Iso) and (Iso)max ; it can be written as

.Z-.Z;O(Vrg "er)'f‘o?Ia_(V-,—E-'f'M,—c -d VG> :

Vé"’_avre

min

ADG :

Using these equations and defining the following terms

LI / 12 (=50 Ve 1) 1y v 3]
a, AT ex/a(v Vf5>[+ (V+.,2V el (Vo Vre),

)

/_,_(/’é‘/”f,oVn/mch) "?'(MI'E-VTE ‘/.Ta. EX/O(V/Vre>(V +

e b ]

QJV j

b

’ (V;+ale)

L AL (- E Vel )(Vn— 2= 5V el
' (Ve +2Vp)



a, = ;é::E%p(qé/w951(}+-2<7"ve" /G" (4 ) (’V %]
g | (V *+al, ) |
N CTEA VR, ) YA (z//14€)(:/ " .:V]
b, = + = Y +.,71/ (Ve = Ve e r )
o P Al ()l

Ve +a vy

it can be shown that*

-b + Vblz— 4ac

aa,

(Iso> min

-b, + l/lo:-l/azcz ,
da,

1]

| <ISo)mnx

These equations describe the envelope of all possible solutions
in the I - Apg plane as a function of the parameter VTe y Where-
0 < VTe € o ,

*The plus sign has been chosen for both equations from the requirement

that (Iso)min and (Iso)max both be greater than zero when V., = Vog *
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The envelope for (Iso)max has the interesting property that there
is a region for which by - 4ajcy < 0. This reglon occurs
between two regions where b% - 4ajcy > 0 and leads to a discontinuity
that occurs in the envelope at infinity. Figure 2 clearly shows

the properties of a typical envelope.

All solutions for I,,as a function of Apg and VTe lie within the
boundaries of this envelope. Physically, however, it is clear that
VTe 2 Vg . The inclusion of this fact is not simple: A solution

for the envelope with the restriction VTe > VG yields a portion

of the envelope in Figure 2; but this portion is not closed. To

find the closed envelope with the restriction VTe 2 VG it is also
necessary to solve Equation (7) for the solution for Vo, =V, .

This was done for the same case shown in Figure 2 and the results are
shown in Figure 3. .

Now, the discontinuity that occurs in the envelope at infinity

may occur either for XTe 2 Vgor Vo, <Vg . Let (VTe)l s (Vpado

be the solutions of b, - 4a2c2 = 0 with (VTe)Z > (VTe)l . This
discontinuity in the envelope at infinity occurs for (VTe)Z 2 VTe

2 (VTe)l . If (VTe)2 < VG , the restricted envelope (i.e., the
envelope with VTe 2 VG ) is bounded and does not extend to infinity.
If (VTe)2 > VG , the restricted envelope still possesses the
discontinuity at infinity.

The possession of the envelope of all possible solutions of

Equation (7) is extremely valuable as the envelope greatly restricts
the range over which numerical iterative procedures must search

to solve Equation (7). Since ADE and VTe are treated as independent
variables, the solutions found for each set of values of T , Tp ,
T, , and I, will be a family of curves on a plot of L, versus

Apg - Each curve in this family can be labeled with a value of Vq, .
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Results

The equations presented in the preceding section have been programmed
for solution on an IBM 7040 computer. Figures 4, 5, and 6 show
results obtained for I_ = 1.5 amps/cm2 (TC ~ 470°K), Tc = 500°K ,

Vg = 5(Vpp + Vo), and Tp = 1400°K, 1450°K, 1500°K, respectively.
Figures 7, 8, and 9 show results obtained for I_ = 30.0 amps/cm

(Tgg = 565°K) T = 500%K, Vg = ¥(Vpp + Vo), and Tg = 1650°K,
1700°K, 1750°K, respectively.

The salient features of these curves are labeled on each figure.
The ratio IS/IPE has been computed at App = 0 and Vgo = 0, = and is
shown on each curve.* Any broad-spaced plasma diode operating
above the top curve in any of these figures necessarily possesses
an electron rich (negative) emitter sheath.** Any broad-spaced
plasma diode bperating below the bottom curve in any of these
figures necessarily possesses an ion rich (positive) emitter
sheath.** From these figures it is clear that an increase in the
net volume ionization with all other parameters constant can cause
the operation of such a plasmadiode to go'from an electron rich

to an ion rich emitter sheath.

For plasma diodes operating in the region between the two curves
(i.e., within the restricted envelope) in any of these figures., it
is imﬁossible to state whether the emitter sheath is positive or
negative without having more information. Although these figures

contain part of the full parametric family of curves (V < V ®),
it is still necessary to obtain the specific solution that relates
App to VT . Only after this precise curve has been specified can

conclusions be drawn about the polarity of emitter sheaths for
plasma diodes operating in the region between the two curves in these
figures.

*It can be shown that for App = 0: Vge =0 = I /I g =»/“‘pV're/‘“eVG ;
Vge = = = IS/IPE =% /mvae/mevG . If Vo = 5(Vpg 4 Vpo), it can also
be shown that Ve = VTE at these two points.

**%[t must be remembered that these results apply only for Vg, = 0.
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Now, the use of the preceding results in the interpretation of
current-voltage characteristics is very difficult. These results
are given in terms of Is' while experimental measurements yield I.
The precise determination if I, from I is very difficult, if not
impossible, in broad-spaced plasma diodes, Thus, it is desirable to
develop criteria in terms of I.

From Equations (1), (3), (4), and (5) it can be shown that an

I, corresponding to ISO , can be defined with the property that
I > I = electron rich (negative) emitter sheath,
I < I_ = ion rich (positive) emitter sheath.

Here, however, the envelope corresponding to (I is in the

so)min
ion current region. Results in terms of I, corresponding to Figures
4-9, are shown in Figures 10-15, respectively. The salient

features of these curves are labeled in each figure. These

figures show that the reverse current can be a useful diagnostic
tool; if the nagnitude of the reverse current is large enough

the emitter sheath is ion rich. For plasma diodes operating in the
region between the two curves in any of these figures, it is

still impossible to state whether the emitter sheath is positlve

or negative without knowing the relationship between Apg and VTe »
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Summary

The general criteria used to determine the sign (polarity) of the
emitter sheath in a plasma diode have been examined in detail. It
was shown that these general criteria reduce to those criteria |
presently in common use only for a collisionless plasma diode.

A phenomenological macroscopic model was used to investigate the
criteria in a broad-spaced collision-dominated plasma diode.
Results were presented that clearly show the effects of volume
ionization and/or recombination. Since the electron temperature
and the net volume ionization aré both treated as independent
variables, these results are a parametrié family of curves.
The envelope of this family of curves is bounded in the I, - App
plane. Results were presented in both the IS -Apgp plane and in .
the I - ADE plane for several cases of interest in thermionic
energy conversion. These results are useful in the determination
of the emitter sheath polarity from current-voltage characteristics

of broad-spaced plasma diodes.
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APPENDIX

Consider the derivation of the energy balance equation for the
plasma (Equation (6)). The motive diagram under consideration is
shown in Figure 1. Choose the potential reference point for both
atoms and electrons to be the potential at the emitter surface.

Consider an imaginary surface immediately outside the emitter and -
look at the energy carried by each species crossing this surface.
Thus: ‘

Energy carried by electrons emitted =.Igo(3‘4e)

Energy carried by atoms evaporated from surface = 1&5.69th)

Energy carried by ions evaporated from surface =T pE (@Yt V)

Energy carried by ions from the plasma =_7,(al+ V)

Energy carried by electrons from the plasma=.Jtg, (2 ¥z

Energy carried by neutral atoms from the plasma =7, ,(2{,)
The net'energy crossing this imaginary surface into the plasma is

Ise (2 TE>+-Z;&— (aVre) + L, (2 re"'V) W+ ¥ )

(A-1)
-Ief (3 V-,-e> —'Z;f’ (Jlé >
Consider an imaginary surface immediately outside the collector
and look at the energy carried by each speties crossing this
surface. Thus: -
Energy carried by neutral atoms from the collector =Z.c 6&»;C)
Energy carried by ions from the plasma = Zy (2 l/g+l/ +Vse + Viep)
Energy carried by electrons from the plasma =7, ,éxp(~ 'é:/vva)(lvn
Energy carried by neutral atoms from the plasma —Jzﬁfzﬁzbl)
where, neglecting plasma resistance, Kv# (¢ ¢5) V= =Vse o
This arises from the choice of the potential reference point.
The net energy crossing this surface out of the plasma is

Tp (30 ¥+ loo #Voep It Teporp (Vo Vre (2 Vi = ) (a-2)

4'Jzﬁf GQV&:)-.J}C;(Qléqz)

«15-
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Now, conservation of the number of cesium particles yields

Toe +Lye = L+ I, =T,
I —; " 4-3
aC T Hprdp = 2o

Neglecting extraneous losses, the net energy entering the plasma

at the emitter surface must equal the net energy leaving the plasma
at the collector surface. Thus, equating (A-1) and (A-Z) and.

using Equations (A-3), it follows that

150(3‘45>+;7;(02V72+&l/7—c—’/ )+ (_Z'é_ ,,7_2‘)

“Zep () - T, enp Llhe /U Y2V + ) =0 A9

SubStltuting Equations (1), (2), and (3), and rearranging terms,
Equation @-4) reduces to

Z, ( Y TEe "~ Té ) + 2Lz, (¢4z'*'png"a “é:)
~Ape (Y +2V, ) - (r+Z1, > Vp = © - (A-5)

This is the energy balance equation for the plasma (Equation (6)).
Through proper choice of the potential reference point and through
the use of the equality of the energy fluxes crossing the imaginary
surface at the emitter and the collector, all interactions that take
place in the interelectrode space have been taken into account.
There is no need to introduce detailed interaction mechanisms to
evaluate any of the terms occurring in this energy balance equation.
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